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1 Introduction

Motion planning is a fundamental problem for autonomous robot navigation. While smoothness and

optimality of trajectory plays key role in effectiveness of planning and robot’s ability to perform complex

maneuvers, an ability to plan fast can be critical for navigation in the unknown or changing environments

which might include other robots or humans operating in the area. Currently planning in unknown environ-

ment constructs a leading edge of research.

2 Related works

The task of planning in high-dimensional space is classified as a PSPACE-hard problem [1]. One way to

considerably save in computation time is to sample the configuration space instead of explicitly constructing

obstacles. Incremental sampling-based methods PRM* and RRT* [2], found success in this area. Both build

a path very fast by uniformly selecting states from a state space and connecting them satisfying feasibility

conditions. Unlike their original versions [3], PRM* and RRT* continue searching for shorter path after

finding initial one and thus are asymptotically optimal. RRT-Connect [4] is another widely accepted variant,

which grows two RRTs from the start and goal states simultaneously. That allows for a very fast search of

initial path, but typically not-optimal. Informed-RRT* [5] tackles that problem and incrementally improves

the best found trajectory by shrinking the sample space using ellipsoidal heuristic derived from the current

best path cost. Recently proposed Informed-RRT*-Connect [6] successfully combines these approaches and

builds an algorithm for 2, 3 and 6 Degree of Freedoms (DoFs), that benefits from bidirectional method, path

length informed sampling space reduction and pruning operation minimizing the cost function. However, due

to stochastic nature of the algorithm initial path can still be heavily sub-optimal even for the obstacle-free

environment and lead to longer convergence rate. In case of real-time planning that means that the optimal

path might not be found on time.

2.1 Real-time planning

To allow for real-time execution onboard an autonomous agent it is important that the solution is found

in less time that is needed for its execution. Trading off search completeness for optimality and speed rapidly

exploring random trees proved to be effective in finding a path, typically not optimal, very quickly [4], and

further with a proper heuristic applied it can converge to an optimal solution over time. That fits real-time

planner requirements very well. Further in their Quad-SDK framework for planning in static environments

[7] Joseph Norby et al. show that decoupling of the planning problem, first considering global planning for

rigid body trajectory, and then performing the footstep planning, helps reduce the problem complexity and

increase both overall convergence rate and quality of the solution.

In anytime planning framework [8] Van Den Berg et al. reuse all prior knowledge about obstacles and

plan over space-time space propagating obstacles over time. It was found useful to perform the CoM planning

over a static environment while planning collision-free repairing based on the observations of the dynamic

obstacles. Similar approach is adapted by Francesco Grothe et al. in recent work [9], where given the full
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knowledge of the environment dynamic obstacles are propagated over time and planning is performed over

space-time state space. Search is performed iteratively for the time planning horizon by building RRT from

the start state and RRTs from the goal regions intersected by the horizon.

In [10] Dave Ferguson et al. argue about availability of the complete information about the obstacles and

provide another replanning method that allows to retain reusable parts of the RRTs by removing only newly-

invalid edges and regrowing the trees to avoid dynamic obstacles. Their implementation was able to solve

a joint planning problem for 10 cars trajectories avoiding collisions and static obstacles over a state space

of size 1054 within 13 seconds. Although these planners make a good advancement towards collision-free

planning under uncertainty and even consider multi-agent setup, they still require prior assumptions about

the environment and obstacles to reduce dynamic problem to static by obstacles prediction or by assuming

partial knowledge of the map.

A good attempt to adjust planning to dynamic environment is made in recent work [11], where Yicheng

Chen et al. explore adaptive heuristics for sampling based on the feedback from previous operation. Their

algorithm adjusts probability of growing RRT directly to the goal state depending on the presence of the

obstacles detected during the previous tree extension. This method converges faster in obstacle-free envi-

ronment than prior RRT-based approaches but still suffers from blindness in irregular cases when heuristic

parameter is forced to be adjusted too often.

2.2 Kinodynamic

Unfortunately in non-holonomic robot models straight-line connections between a pair of states might

not lead to a valid trajectory due to the system’s differential constraints, but luckily EXTEND operation of

an RRT-based algorithm allows to apply any requirements on the trajectory and solve optimization problem

or plan kinodynamic motion over an obstacle-free stretch. Provided with the height from the sampled state

within this operation the global plan can be supplied with motion primitives for the local planner to plan

footsteps.

[12] successfully extends RRT* to Dubins vehicle and double integrator models. Kinodynamic RRT* [13]

additionally incorporates cost-to-go term along with the optimal control strategy and solves the two-point

boundary value problem per each new state added to the RRT. Authors also suggested that strong correlation

of velocity and orientation should be reflected in sampling which can lead to even better convergence rate

and smoother solutions. The work [3] implements vector field guided heuristic in application to planning

for quadrotors, it shows improvements to smoothness of the trajectory by restricting sampling space to the

cone of potential field that directs RRT growth towards the goal state. Kinodynamic approach to planning

proposed by [14] steps towards hierarchical planning too and first builds a trajectory for centroidal dynamics,

after that validates it according to collision avoidance, bounds on position and dynamic equilibrium, and

applies a steering method.

3 Conclusions

Randomized sampling-based planners proved their success in tackling the curse of dimensionality. Among

advantages of RRT-based algorithms are rapidness, probabilistic completeness, assymptotical optimality (for

optimal variants) and scalability. That makes them a good fit for real-time planning in unknown or dynamic

environment. Recently introduced Adaptively Dynamic RRT*-Connect algorithm [11] solves the planning

problem for UAV in known environment with dynamic obstacles but its prunning-reconnection mechanism

presents a good base for extension for other applications in unknown and dynamic environments given an

ability obtain or perceive the immediate surrounding of the robot. In this work Y. Chen et al. make an

assumption based on prior sampling result, thus if previously no obstacles were between the newly-sampled

node and the tree, the next sampling was pulled closer to the goal state with higher probability. For the
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area in the proximity of the robot such check and adjustment could easily be done precisely with camera or

just LiDAR.

Due to their stochastic nature RRT-based algorithms bring advantage of eventually exhausting all the

state space given, even if some areas won’t give a meaningful exploration. To tackle that a proper heuristic

can help focus or guide the search and reduce the sampling space in the desired direction. In [11] this

role played the best path cost, in [3] potential field guided RRT growth towards the goal state. While

direct trajectory towards the goal might not be feasible due to obstacles, a better velocity-guided sampling

might help build smoother solution. Developing this idea further one might expect that propagating velocity

influence from the previous state could smooth the path even further. This can help avoid typical winding

paths appearing in RRTs due to its stochastic nature, in cases where a straight line is the obvious best

solution. Comparing to the well-known rewiring operation [2], which slows down the search by adding a

loop, velocity propagation should add no more than O(1) of additional computational cost.

Furthermore, given the information about initial direction the sampling space can be reduced in the

fashion of Informed-RRT* [5] for the initial part of the RRT from the start state. This estimation can be

obtained from the onboard sensors. Additionally observable obstacle-free area can allow for direct sampling

and steering planning reducing the sampling space for the rest of the path.

Not many global planning approaches take advantage of perception commonly available onboard of many

autonomous robots, but this direction is attracting attention in modern research and provides ideas for

perception-aware global planning algorithms for kinodynamic systems in dynamic and unknown environ-

ments.
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